Geological evolution of Venezuela-Trinidad reassessed:
Protocaribbean-Caribbean foreland basins (Campanian-Recent)
and Neogene wedge-top halite-dissolution basins

by Dr Roger Higgs,
Geoclastica Ltd

July 2005

Confidentiality -
This document is for the exclusive use of XX and is subject to a confidentiality agreement between XX and Geoclastica Ltd. None of the contents may be passed to third parties outside XX.

EXECUTIVE SUMMARY

In the popular "Pindell Model", the Jurassic-Cretaceous passive margin of Trinidad and northern Venezuela was destroyed by diachronous Caribbean Arc collision and foreland-basin initiation, from Paleocene in the west (Maracaibo) to Miocene in the east (Trinidad). In contrast, an exhaustive synthesis presented here of the Spanish and English literature published since 1860 clearly shows a S-verging, S-migrating non-diachronous Maracaibo-Trinidad foreland basin, from Campanian time. This basin can be attributed to the published concept of slow (amagmatic) Protocaribbean subduction under the N-facing former passive margin, from Campanian time, pushing a "Slope Nappe" (former passive-margin slope and underlying rift fill and continental basement) up onto the former outer shelf, metamorphosing the shelf and rift succession there, and driving the foreland basin. In turn these metashelf and metarift strata were later uplifted as an in-sequence "Shelf Nappe" (present Coastal Cordillera-
Araya-Paria-Northern Range; Oligo-Miocene cooling ages), further eroding the covering Slope Nappe and forcing the basin south. Nappe mountains fed olistostromes and turbidites southward to this foreland basin from late Campanian to early Late Miocene time; these were deposited as submarine fan-deltas on the northern "active slope" of a flysch trough, facing a mud-rich "passive slope" and (beyond) a sandy southern shelf.

A second problem with the Pindell Model is that, as shown here, the Caribbean Arc began its 1,100 km ESE (relative) transit along the Venezuela-Trinidad margin much later than the model asserts, starting from Guajira in the far west at 30 Ma (mid-Oligocene) rather than 60 Ma (Paleocene). This ESE motion along the Protocaribbean coastal mountains caused Late Oligocene pullapart (with volcanism) in the western sector of the margin, due to its parallel (ESE) orientation, forming the Gulf of Venezuela-Falcón Basin. In contrast, the different orientation of the eastern sector (ENE) caused oblique obduction of a Caribbean Arc nappe (incorporating the Villa de Cura Complex, Margarita and Tobago) onto the Slope-Shelf Nappe stack, through Early Miocene to Recent time (still in progress at Tobago); thus the Caribbean took over diachronously (progressively later eastward) as the foreland-basin driver. The presently active Caribbean foredeep is confined to the Deltana Basin (east of the San Francisco Fault SE projection) and contiguous Columbus Basin; W of here all former Protocaribbean-Caribbean foredeep regions of E and C Venezuela are rebounding, because their Caribbean-nappe drive has been cut off by eastward migration of the nappe "suture point" (now at Margarita), lying on the San Francisco-Roques Canyon transform, that connects NW to an E-tearing, S-dipping (Caribbean) subduction zone, namely the South Caribbean Marginal Fault.

Late Miocene (post-11 Ma) to Recent basins on the Caribbean Nappe (i.e. lying north of the "Cura-Margarita-Tobago line"; Tuy Basin, northern Gulf of Barcelona, Cariaco Trough, northern Carúpano-North Coast Basins), interpreted in the literature as extensional or transtensional despite lacking volcanics, grew during and after nappe emplacement. These are reinterpreted here as "pseudo-extensional" basins, formed by
subsurface dissolution of a formerly unknown, thick (km), synrift, diapiric, lowermost Cretaceous halite interval in the underlying Slope Nappe, here named the "Carib Halite". Similar halite-dissolution supraorogen basins were also growing to the south, on the active Shelf Nappe and adjacent parautochthonous S-verging thrust belt (e.g. southern Carúpano-North Coast Basin, Morichito, Gulf of Paria, Caroni, South Trinidad Basins). All of the halite-dissolution basins are syn-orogenic wedge-top basins, in which halite-dissolution subsidence outweighed tectonic (shortening) uplift; subsequent reduction or cessation of halite dissolution (due to halite exhaustion?) locally in Trinidad allowed uplift to overtake subsidence in Quaternary time (ca 1 Ma), forming the Central and Southern Ranges. Massive underground halite dissolution coincided with the 11-0 Ma long-term glacioeustatic low (Haq), and reflects prodigious rainfall during each post-glacial recovery (present interglacial climate is relatively arid in parts of Venezuela, such as Falcón), supplying fresh water to the subsurface along orogenically fractured aquifers connected to nappe- and thrust-belt mountain recharge areas.

Halite dissolution on such a scale is globally unique and is attributed to a fortuitous combination of three factors: (1) orogenic uplift, producing a large hydraulic head and extensive fracturing, both of which promoted meteoric-water infiltration and deep hydrothermal circulation; (2) tropical glacially affected climate with extreme rainfall; and (3) fractured aquifers in contact with the Carib Halite (e.g. in Trinidad, fractured metamorphics below and fractured limestones locally above).

The Carib Halite dissolution "weld" can be identified in wells and exposures, but the halite itself is nowhere exposed, and where thought to be preserved is beyond drilled depths. The halite or its weld occurs in the Slope and Shelf Nappes, and in the parautochthon/autochthon at least as far south as the present frontal thrust in Trinidad, eastern Venezuela and central Venezuela, as well as under the Falcón highlands and in the Mérida-Perijá ranges, as shown by supraorogen basins, saline springs, gypsum veins and other indicators of buried-halite dissolution.
The Carib Halite was deposited during the late-rift stage in a graben system that reached westward from Trinidad across northern Venezuela to Falcón, and in connecting grabens coinciding with the present Mérida and Perijá mountains, linking with a halite-bearing graben in Colombia (Bogotá halite). The age of the Carib Halite, constrained by fossils in strata below and above the dissolution weld, is early Neocomian (specifically late Berriasian and early Valanginian); this age is consistent with the lack of any indisputably Berriasian faunas among the recorded Jurassic-Cretaceous fossils ever found in Venezuela and Trinidad, and coincides precisely with a major eustatic sea-level low (Haq chart), that provided the halite-depositing graben with the required isolation from the world ocean. The deduced Neocomian age of the halite indicates that rifting in Venezuela and Trinidad persisted much later than proposed by Pindell and co-workers, who argued that Protocaribbean rifting ended (sea-floor spreading began) 20-30 m.y. earlier in the Jurassic (Oxfordian).

The missing halite explains, among many other diverse phenomena, the well known metamorphic-grade discontinuity (at the weld) in the Northern Range, and also in Paria Peninsula, separating (A) the Güinimita-Laventille-Lopinot-Toco post-rift suite, showing incipient metamorphism only (shales locally converted to slate and phyllite; limestones locally recrystallized, impeding dating due to alteration of fossils), from (B) metamorphic older rocks (Macuro, Cariaquito, Maracas, Maraval, etc.), showing prehnite- to greenschist metamorphism (including Sans Souci rift volcanics), with shales entirely converted to phyllite and schist.

Since 5 Ma, the Maracaibo-Bonaire Microplate (limited by Roques and South Caribbean Faults) has been moving ENE relative to South America, along the San Sebastián Fault (Caracas coast), pushed by Caribbean subduction in the west, forming the Mérida Andes oblique bivergent thrust mountains and the flanking Maracaibo and Barinas foreland basins. Most previous workers consider the Mérida Andes to be at least twice this age. Uplift of the Sierra de Perijá and of mountains throughout Falcón-Guajira also occurred. The Falcón-Guajira mountains subsequently collapsed in the
west by subsurface dissolution of the Carib Halite, causing the Gulf of Venezuela to resubside.

These three "new" concepts, namely early northern orogeny (in fact a 1970s idea), "late" Caribbean Arc arrival (1980s), and massive halite dissolution, will profoundly affect exploration, changing interpretations and predictions of subsidence history, paleogeography, structure (halite décollement), traps (thrusting; dissolution collapse structures), heat flow (high thermal conductivity of halite), seismicity, previously unsuspected evaporitic source rocks, seals, etc. For example, rejecting the popular Gulf of Paria pullapart model, in favor of halite-dissolution subsidence, negates both a supposed 11Ma change in Caribbean relative motion vector, from ESE to ENE, and major dextral slip (10s km) on mythical east-west master faults in Trinidad that have never been found and that cause drastic dextral palinspastic disruption, with vital implications for oil exploration.

This report presents the Campanian to Recent evolution of the whole Venezuela-Trinidad region, covering every basin, and detailing the diverse evidence for deep-halite dissolution (from outcrops, wells and seismic profiles) and for long-lived northern provenance (based on southward fining, olistolith compositions and heavy minerals). The report is a painstaking synthesis of the literature, with the added benefit of the the author's 15 years of experience in the region, conducting outcrop and subsurface studies throughout Venezuela and Trinidad, including three years as clastic-sedimentology consultant to Petróleos de Venezuela. No previous report or publication has described and interpreted both of these countries as a unified entity, or in such detail. Several enigmatic formations are discussed in particular detail and demystified (e.g. Patos Conglomerate, "basal Vidoño limestone", "Corazón limestone", Caratas, Tinajitas, San Fernando, "Lecherías Beds"). The report integrates and interprets a vast amount of published data, enhanced by outcrop observations by the author. Products include 8 new and original tectonogeographic maps (Maastrichtian to Pliocene) and various tables of data (olistolith compositions, heavy minerals, evaporite occurrences by formation, Venezuela-Trinidad halite-dissolution basins, and analagous basins
worldwide). Aside from these benefits, the report can be used as a computer-searchable encyclopedia and literature source of Venezuela-Trinidad basins and formations. With onshore and onshore bid rounds scheduled in Trinidad for 2005-2006, and the strong likelihood of land offerings in Venezuela over the next five years (change of president?), plus the recently demonstrated continued potential for giant oilfield discoveries (e.g. Angostura, discovered 1999), no exploration company interested in this prolific petroleum province can afford to be without this report.
CONTENTS

EXECUTIVE SUMMARY i

1. GEOLOGICAL BACKGROUND 1
 1.1. Present-day Caribbean Arc complex & its junction with South America 1
 1.2. Present-day relative motion vector of the Caribbean Plate 2
 1.3. History of plate-tectonic interpretations of northern South America, culminating in the "Pindell Model" 4
 1.4. Flaws in the Pindell Model 6

2. EVIDENCE FOR NORTHERN SOURCE AREA FROM CAMPANIAN TIME 10
 2.1. Northern olistostromes, fining south 10
 2.1.1. Introduction 10
 2.1.2. Olistostromes in W Venezuela, C Venezuela & Trinidad 11
 2.1.3. Olistostromes in E Venezuela 13
 2.1.3.1. Introduction 13
 2.1.3.2. Maast-Paleocene(?) olistostrome 1, Casanay region 15
 2.1.3.3. Maast-Paleocene(?) olistostrome 2, Casanay region 16
 2.1.3.4. "Vidoño", Casanay region 16
 2.1.3.5. Areo, Montones Quarry, near Barcelona 17
 2.1.3.6. Areo, "Dead Dog Bend", near Barcelona 17
 2.1.3.7. Areo, Paso de las Peñas Quarry, nr Naricual 18
 2.1.3.8. Naricual, Naricual Quarry 20
 2.1.3.9. Conclusion 20
 2.2. Cannibalization 20
 2.3. Sandstone mineralogy 21
 2.3.1. Staurolite 21
 2.3.2. Glaucophane 23
 2.3.3. "Blue quartz" 24

3. PROTOCARIBBEAN INTERACTION WITH SOUTH AMERICA 25
 3.1. Protocaribbean subduction (Campanian-Pliocene), causing uplift of "Slope Nappe", then "Shelf Nappe", driving a foreland basin 25
 3.2. Burial metamorphism, under Slope Nappe, of future Shelf Nappe (Jur-Cret rift & passive-margin strata on Hercynian basement) 30
 3.3. Remnants of the Slope Nappe 35
 3.3.1. Introduction 35
 3.3.2. Tacagua and El Copey Formations 36
 3.3.3. Manicuare Formation & Juan Griego Group 38
 3.3.4. El Tinaco Complex 39
 3.3.5. Yumare Complex 39
 3.3.6. Conclusion 39
 3.4. Current position of Shelf Nappe leading edge: Hercynian Front 40
 3.5. Emplacement of Shelf Nappe earlier in the west 42
4. CARIBBEAN INTERACTION WITH SOUTH AMERICA
 4.1. Late arrival & obduction of the Caribbean Arc
 4.2. The active foredeep: Deltana Basin, Columbus Basin
 4.3. Past & present velocity of the Caribbean Plate
 4.4. Caribbean Plate is not fixed in the mantle reference frame
 4.5. Ablative subduction & trench rollback at the Caribbean-
 Protocaribbean plate boundary

5. THE VANISHING SYNRIFT KILOMETRIC "CARIB HALITE" OF
 VENEZUELA & TRINIDAD
 5.1. Introduction
 5.2. Neogene supraorogen basins attributed to buried-halite dissolution
 5.3. Known occurrences of bedded evaporites in Venezuela & Trinidad
 5.3.1. Anhydrite/gypsum
 5.3.2. Halite
 5.4. Indirect evidence for buried evaporites
 5.4.1. Saline springs
 5.4.2. Gravity anomaly
 5.4.3. High geothermal gradient indicated by "hot wells"
 5.5. Evidence for dissolved or dissolving subsurface halite
 5.5.1. Geomorphological evidence
 5.5.1.1. Dragon's Mouth mountain rupture
 5.5.1.2. Gulf of Barcelona mountain rupture
 5.5.1.3. Carora, Hueque, Lake Valencia, Caracas intramontane plains
 5.5.2. Geological evidence
 5.5.2.1. Block-faulted structural style of Neogene basins
 5.5.2.2. Isolated structural highs below Neogene basins
 5.5.2.3. Thrust-belt structural style
 5.5.2.4. Collapse folds
 5.5.2.5. Rollover structure: Morichito Basin
 5.5.2.6. Gypsum veins
 5.5.2.7. High paleo-heat flow
 5.5.2.8. Crude oils with evaporitic signatures
 5.5.2.9. Collapse breccias
 5.5.2.10. Rauhwacke
 5.5.2.11. Barite cement
 5.5.2.12. Mineralization
 5.6. Carib Halite: distribution, thickness, tectonic setting, age
 5.6.1. Distribution
 5.6.2. Thickness
 5.6.3. Tectonic setting deduced from calculated subsidence rate
 5.6.4. Stratigraphic position
5.6.4.1. Trinidad & E Venezuela 88
5.6.4.2. C Venezuela 92
5.6.4.3. W Venezuela 93
5.6.4.4. Colombia 94

5.7. Comparison with other halite-dissolution basins 95
5.7.1. Thickness of dissolved halite 95
5.7.2. Depth of halite dissolution 95
5.7.3. Rate of dissolution 96

5.8. Unique scale & extent of Carib Halite dissolution 96

6. CONTROVERSIAL FORMATIONS EXPLAINED BY THE NEW CONCEPTS 98
6.1. Introduction 98
6.2. Patos Conglomerate, Venezuela: latest Cret foreland-basin deposits 98
6.3. Paleocene "basal Vidoño limestone", "Corazón limestone" & "Voladero glauconite": Protocaribbean forebulge condensed section 100
6.4. Eocene glauconitic sandstones (Cautaro, Caratas, Mount Moriah) & redeposited limestones (Peñas Blancas-Tinajitas-San Fernando) 102
6.5. Subsurface "Tinajitas" & "Areo glauconite member": Early Oligocene diachronous condensed section 109
6.6. "Tinajitas boulder bed" at "Dead Dog Bend" is an Areo Formation olistostrome: demise of the "Tinajitas Syncline" 109
6.7. "Lecherías Beds": Plio-Pleistocene halite-dissolution-basin deposits 112

7. CONTROVERSIAL FAULTS EXPLAINED BY THE NEW CONCEPTS 118
7.1. El Pilar Fault in Venezuela & Trinidad 118
7.2. Arima Fault 121
7.3. The Boconó Fault & Mérida Andes: independent motion of the "Maracaibo-Bonaire Microplate" since 5 Ma 121

8. VENEZUELA-TRINIDAD CAMPAANIAN-RECENT TECTONO-SEDIMENTARY EVOLUTION 124
8.1. Foreland basin tripartite tectonodepositional facies & corresponding formation suites 124
8.2. late Campanian-Maastrichtian 125
8.2.1. Tectonics: migration of Protocaribbean forebulge across former passive-margin shelf 125
8.2.2. Formations deposited 128
8.2.2.1. Sectors 1 & 2 (Perijá-Maracaibo-Barinas) 128
8.2.2.2. Sector 3a (C Venezuela) 128
8.2.2.3. Sector 3b (E Venezuela) 128
8.2.2.4. Sector 3c (Trinidad) 128
8.2.3. Remarks 128
8.3. Paleocene 130
8.3.1. Tectonics 130
8.3.2. Formations deposited 132
8.3.2.1. Sectors 1 & 2 (Perijá-Maracaibo-Barinas) 132
8.3.2.2. Sector 3a (C Venezuela) 132
8.3.2.3. Sector 3b (E Venezuela) 132
8.3.2.4. Sector 3c (Trinidad) 132
8.3.3. Remarks 132
8.4. Early Eocene 136
 8.4.1. Tectonics 136
 8.4.2. Formations deposited 137
 8.4.2.1. Sectors 1 & 2 (Perijá-Maracaibo-Barinas) 137
 8.4.2.2. Sector 3a (C Venezuela) 137
 8.4.2.3. Sector 3b (E Venezuela) 137
 8.4.2.4. Sector 3c (Trinidad) 137
 8.4.3. Remarks 137
8.5. Early Middle Eocene 138
 8.5.1. Tectonics 138
 8.5.2. Formations deposited 138
 8.5.2.1. Sectors 1 & 2 (Perijá-Maracaibo-Barinas) 138
 8.5.2.2. Sector 3a (C Venezuela) 139
 8.5.2.3. Sector 3b (E Venezuela) 139
 8.5.2.4. Sector 3c (Trinidad) 139
 8.5.3. Remarks 139
8.6. Late Middle Eocene 140
 8.6.1. Tectonics 140
 8.6.2. Formations deposited 140
 8.6.2.1. Sectors 1 & 2 (Perijá-Maracaibo-Barinas) 140
 8.6.2.2. Sector 3a (C Venezuela) 140
 8.6.2.3. Sector 3b (E Venezuela) 140
 8.6.2.4. Sector 3c (Trinidad) 140
 8.6.3. Remarks 141
8.7. Late Eocene 141
 8.7.1. Tectonics 141
 8.7.2. Formations deposited 142
 8.7.2.1. Sectors 1 & 2 (Perijá-Maracaibo-Barinas) 142
 8.7.2.2. Sector 3a (C Venezuela) 142
 8.7.2.3. Sector 3b (E Venezuela) 142
 8.7.2.4. Sector 3c (Trinidad) 143
 8.7.3. Remarks 143
8.8. Early Oligocene 143
 8.8.1. Tectonics 143
 8.8.2. Formations deposited 145
 8.8.2.1. Sectors 1 & 2 (Perijá-Maracaibo-Barinas) 145
 8.8.2.2. Sector 3a (C Venezuela) 145
 8.8.2.3. Sector 3b (E Venezuela) 145
 8.8.2.4. Sector 3c (Trinidad) 145
 8.8.3. Remarks 146
8.9. Late Oligocene
 8.9.1. Tectonics 150
 8.9.2. Formations deposited 152
 8.9.2.1. Sectors 1 & 2 (Guajira/Gulf of Venezuela/
 Falcón-Perijá-Maracaibo-Barinas) 152
 8.9.2.2. Sector 3a (C Venezuela) 152
 8.9.2.3. Sector 3b (E Venezuela) 152
 8.9.2.4. Sector 3c (Trinidad) 152
 8.9.3. Remarks 153

8.10. Early Miocene 155
 8.10.1. Tectonics 155
 8.10.2. Formations deposited 155
 8.10.2.1. Sectors 1 & 2 (Guajira/Gulf of Venezuela/
 Falcón-Perijá-Maracaibo-Barinas) 155
 8.10.2.2. Sector 3a (C Venezuela) 155
 8.10.2.3. Sector 3b (E Venezuela) 156
 8.10.2.4. Sector 3c (Trinidad) 156
 8.10.3 Remarks 156

8.11. Middle Miocene 157
 8.11.1. Tectonics 157
 8.11.2. Formations deposited 157
 8.11.2.1. Sectors 1 & 2 (Guajira/Gulf of Venezuela/
 Falcón-Perijá-Maracaibo-Barinas) 157
 8.11.2.2. Sector 3a (C Venezuela) 158
 8.11.2.3. Sector 3b (E Venezuela) 158
 8.11.2.4. Sector 3c (Trinidad) 158
 8.11.3. Remarks 158

8.12. Late Miocene 160
 8.12.1. Tectonics 160
 8.12.2. Formations deposited 160
 8.12.2.1. Sectors 1 & 2 (Guajira/Gulf of Venezuela/
 Falcón-Perijá-Maracaibo-Barinas) 160
 8.12.2.2. Sector 3a (C Venezuela) 161
 8.12.2.3. Sector 3b (E Venezuela) 161
 8.12.2.4. Sector 3c (Trinidad) 161
 8.12.3. Remarks 161

8.13. Pliocene-Quaternary 162
 8.13.1. Tectonics 162
 8.13.2. Formations deposited 164
 8.13.2.1. Sectors 1 & 2 (Guajira/Gulf of Venezuela/
 Falcón-Perijá-Maracaibo-Barinas) 164
 8.13.2.2. Sector 3a (C Venezuela) 164
 8.13.2.3. Sector 3b (E Venezuela) 165
 8.13.2.4. Sector 3c (Trinidad) 165
 8.13.3. Remarks 165
9. OIL EXPLORATION IMPLICATIONS
 9.1. Introduction
 9.2. Revised paleogeographic maps
 9.3. Oil source rock
 9.4. Uplift-subsidence history of basins
 9.5. Thermal-maturation models
 9.6. Interpretation of structural style

10. REFERENCES

List of Tables (tables located at end of main text)
1. Venezuelan olistostromes and identified donor formations of their olistoliths.
2. Heavy-mineral compositions of Venezuelan formations.
3. Interpreted Colombia-Venezuela-Trinidad halite-dissolution basins.
4. Gypsum and anhydrite occurrences by formation, central and eastern Venezuela.
5. Gypsum and anhydrite occurrences by formation, western Venezuela.

List of Figures (figures located at end of main text, after tables)
1. Present-day tectonic and basin map of Venezuela and Trinidad.
5. Tectono-stratigraphic chart for the main basins of Venezuela and Trinidad.
6. Cartoon paleoplate maps showing Caribbean relative motion since Paleocene.
9. Photo, E Venezuela loose sandstone boulder interpreted as winnowed olistolith.
10. Photos, E Venezuela loose sandstone boulders interpreted as winnowed olistoliths.
11. Photos, E Venezuela loose limestone boulder interpreted as winnowed olistolith.
12. Photos, E Venezuela "Vidoño" bouldery shale interpreted as olistostrome.
13. Photo, E Venezuela Areo Fm bouldery shale interpreted as olistostrome.
14. Photos, E Venezuela Tinajitas "boulder bed" interpreted as Areo Fm olistostrome.
15. Photos, E Venezuela possible mega-olistolith in Areo Fm shale.
16. Photo, E Venezuela possible olistolith in Narical Fm shale.
19. Late Maastrichtian tectonogeographic map of Venezuela and Trinidad.
20. N-S paleo-sections of the Venezuela-Trinidad continental margin, showing
development of Slope Nappe and Shelf Nappe.
21. Interpreted uppermost Jurassic-Lower Cretaceous stratigraphy of Trinidad and northern E Venezuela, showing inferred position of the "Carib Halite".
26. Photo, E Venezuela El Cantil Fm limestone cliff sinking, as shown by lack of raised marine-dissolution notches.
29. Photo, E Venezuela Chimana Fm with gypsum veins.
30. Photo, E Venezuela Aro Fm with gypsum veins.
31. Interpretive N-S section, E Venezuela Basin, showing Campanian-M Miocene sequence stratigraphy and tectono-sedimentary environments.
32. Photos, E Venezuela, Via Alterna roadcut, Tinijitas Mbr "replacement type section".
33. W-E schematic stratigraphic section, E Venezuela-Trinidad, with interpreted Eocene-Early Oligocene stratigraphy and depositional environments.
34. Photos, E Venezuela, Tinajitas redeposited-limestone graded bed.
36. Photos, E Venezuela, upside-down graded beds disproving "Tinajitas Syncline".
37. Photos, E Venezuela, Lecherías Beds, general and close-up views.
38. Photos, E Venezuela, Lecherías Beds, shales with anhydrite veins and nodules.
39. Late Maastrichtian tectonogeographic map of Venezuela and Trinidad.
40. Paleocene tectonogeographic map of Venezuela and Trinidad.
41. Early Eocene tectonogeographic map of Venezuela and Trinidad.
42. Late Middle Eocene tectonogeographic map of Venezuela and Trinidad.
43. Early Oligocene tectonogeographic map of Venezuela and Trinidad.
44. Early Miocene tectonogeographic map of Venezuela and Trinidad.
45. Late Middle Miocene tectonogeographic map of Venezuela and Trinidad.
46. Early Pliocene tectonogeographic map of Venezuela and Trinidad.